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ABSTRACT 
Since 1972, several graph indices were introduced and studied. In this paper, we define the Banhatti degree of 

vertex in a graph. We propose the first and second E-Banhatti indices of a graph. A study of E-Banhatti indices 

in Mathematical Chemistry is a New Direction in the Theory of Graph Index in Graphs. Also we compute these 

newly defined E-Banhatti indices and their corresponding exponentials for wheel graphs, friendship graphs and 

some important nanostructures which are appeared in nanoscience. 
 
Keywords: first and second E-Banhatti indices, first and second E-Banhatti polynomials, graph, nanostructure 

 

1. INTRODUCTION 
The simple, connected graph G is a graph with vertex set V(G) and edge set E(G). The number of vertices 

adjacent to the vertex u called degree of u, denoted by d(u). The edge e incident by the vertices u and v with 

edge uv=e. Define d(e) = d(u) + d(v) – 2. For other graph terminologies and notions, the readers are referred to 

books [1, 2]. 

 

Mathematical Chemistry is very useful in the study of Chemical Sciences. We have found many applications in 

Mathematical Chemistry by using graph indices, especially in QSPR/QSAR research [3]. 

 

              We define the Banhatti degree of a vertex u of a graph G as  

                 

 
 

 
,G

G

d e
B u

n d u



 

where |V(G)|= n and the vertex u and edge e are incident in G. 

 

            We put forward the first and second E-Banhatti indices and these are defined as 

 

      
 

1 ,
uv E G

EB G B u B v


   

 

     
 

2 .
uv E G

EB G B u B v


    

            We propose the first and second E-Banhatti polynomials as 

 

     

 
1 , ,

B u B v

uv E G

EB G x x




   

     

 
2 , .

B u B v

uv E G

EB G x x


   

  

In Mathematical Chemstry, several graph indices were put forward and studied such as the Wiener index [4, 5, 

6, 7], the Zagreb indices [8, 9, 10, 11], the Revan indices [12, 13, 14, 15], the Gourava indices [16, 17, 18, 19], 

the Banhatti indices [20, 21, 22, 23] and the Reverse indices [24, 25]. 
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In this paper, we establish some usefull results on the first and second E-Banhatti indices and their 

corresponding polynomials. 

 

2. SOME STANDARD GRAPHS 
 

Proposition 1. Let G be r-regular with |V(G)|= n and r ≥ 2. Then 

(i)       
1

2 ( 1)
,

nr r
EB G

n r




  

(ii)      
2

2 2

2 ( 1)
.

( )

nr r
EB G

n r





 

Proof: Let G be r-regular with n vertices and r ≥ 2. Then |E(G)|= 
2

nr
. For any edge e in G,d(e)=2r−2. From 

definition, we deduce   

(i)      
1EB G 

2 2 2 2 2 ( 1)
,

2

nr r r nr r

n r n r n r

   
     

 

(ii)     
2

2 2

2 2 2 2 2 ( 1)
.

2 ( )

nr r r nr r
EB G

n r n r n r

   
      

 

Corollary 1.1.   For a cycle  nC with n≥ 3 vertices, 

 (i)       1

4
.

2
n

n
EB

n
C 

  

(ii)     
 

 2 2

4
.

2
nC

n

n
EB


  

Corollary 1.2.   For Kn   with n≥ 3 vertices, 

 (i)          1 2 1 2 ,nEB nK n n    

 (ii)         

2

2 4 1 2 .nEB n n nK     

 

Proposition 2. For a path  nP  with n≥ 3 vertices, 

(i)       
 

2

1

1 2 2 2 4 10 4
2 .

1 2 2 2 ( 1)( 2)
3n

n n
EB

n n n n n
n

n
P

    
               

 

(ii)      
 

2

2

1 2 2 2 4 10 4
2 .

1 2 2 2 ( 1)( 2)
3n

n n
EB

n n n n n
n

n
P

    
               

 

Proposition 3.  For Km,n  with 1 ≤ m≤ n and n ≥ 2, 

(i)     ,   1 ( )( 2),m nEB m n mK n     

 (ii)   ,   
2

2 ( 2) .m nE m nKB     

Proof: Let Km,n    be a complete bipartitegraph with |V( Km,n )|= m + n  and |E( Km,n )|= mn  such that |V1|= m , | 

V2|= n, V (Kr,s ) = V1 ∪V2  for 1 ≤ m  ≤ n, and n ≥ 2. Then d(e)= m + n −2 for any edge e in Km,m. 

 

 

(i)           
 

,  1  m n

uv E G

EB B B vK u


 
2 2m n m n

mn
m n n m n m

    
      

 
( )( 2).m n m n   
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(ii)       
 

,  2  

2 2
m n

uv E G

m n m n
EB B u B v mn

m n n
K

m n m

    
       


 

                            
2( 2) .m n  

 Corollary 3.1.   For Kn,n   with n≥ 2, 

(i)     ,   1 4 ( 1).n nE n nKB    

(ii)    ,   
2

2 4( 1) .n nE nKB    

Corollary 3.2.   For K1,n   with n≥ 2, 

(i)    1,   
2

1 1.nE KB n   

(ii)   1,   
2

2 ( 1) .nEB nK  
 

 

3. WHEEL GRAPHS 
 

       A wheel graph Wn has |V(Wn)|=n+1 and |E(Wn)|=2n, see Figure 1. 

 
Figure 1. Wheel graph Wn 

 

      In Wn, there are two types of edges as follows:  

 E1 = {uv∈ E(Wn) | d(u) = d(v) = 3}, |E1| = n. 

 E2 = {uv∈ E(Wn) | d(u) =3, d(v) = n}, |E2| = n. 

 

      Therefore, in Wn, we obtain that {B(u), B(v): uv∈ E(Wn)}has two  Banhatti edge set partitions. 

           BE1 = {uv∈ E(Wn) | B(u) = B(v) =
4

2n 
}, |BE1| = n. 

 BE2 = {uv∈ E(Wn) | B(u) =
1

2

n

n




, B(v) = n+1}, |BE2| = n. 

       We calculate the first and second E-Banhatti indices of Wn as follows: 

 

Theorem 1. Let Wn be a wheel graph. Then  

  (i)        
3

1

7
.

2
n

n n
EB W

n





  

 

  (ii)      
 

 

 

2

2 2

16 2 1
.

22
n

n n n n
EB W

nn

 
 


 

Proof: From definition and by cardinalities of the Banhatti edge partition of Wn, we obtain 
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   (i)            
 

1

n

n

uv E W

EB W B u B v


 
4 4 1

1
2 2 2

n
n n n

n n n

   
       

       

By simplifying the above equation, we get the desired result.                                

 
  (ii)          

 
2

n

n

uv E W

EB W B u B v


   
4 4 1

1
2 2 2

n
n n n

n n n

   
       

       

By solving the above equation, we get the desired result.                                

  

         By using definitions and by cardinalities of the Banhatti edge partition of Wn, we obtain the first and 

second E-Banhatti polynomials of Wn. 

 

Theorem 2. Let Wn be a wheel graph. Then  

    (i)      

28 1

2 2
1 , .

n

n n
nEB W x nx nx



  
 

 

   (ii)       

 2

2

16 1

2 2
2 , .

n

n n
nEB W x nx nx



    

 

4. FRIENDSHIP GRAPHS 
 

       The friendship graphs Fn, n ≥ 2, have 2n+1 vertices and 3n edges are shown in below graph. 

 
Figure 2. Friendship graph F4 

 

      In Fn, there are two types of edges as follows:  

       1 | 2 ,nE uv d u d vE F     |E1| = n. 

       2 | 2, 2 ,nE uv d u d vE F n     |E2| = 2n. 

     Therefore, in Fn, we obtain that {B(u), B(v): uv∈ E(Wn)}has two  Banhatti edge set partitions. 

           BE1 = {uv∈ E(Fn) | B(u) = B(v) =
2

2 1n 
}, |BE1| = n. 

 BE2 = {uv∈ E(Fn) | B(u) =
2

2 1

n

n 
, B(v) =2n}, |BE2| =2 n. 

      We calculate the first and second E-Banhatti indices of Fn as follows: 

 

Theorem 3. Let Fn be a friendship graph. Then  

 (i)       
3

1

8 4
.

2 1
n

n n
EB F

n





  

(ii)       
   

3

2 2

4 8
.

2 12 1
n

n n
EB F

nn
 


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Proof: From definition and by cardinalities of the Banhatti edge partition of Fn, we obtain 

  (i)            
 

1

n

n

uv E F

EB F B u B v


 
2 2 2

2 2 .
2 1 2 1 2 1

n
n n n

n n n

   
      

       

By simplifying the above equation, we obtain the desired result.                                

 
  (ii)          

 
2

n

n

uv E F

EB F B u B v


 
2 2 2

2 2 .
2 1 2 1 2 1

n
n n n

n n n

   
      

       

By solving the above equation, we get the desired result.                                                             

          By using definitions and by cardinalities of the Banhatti edge partition of Fn, we obtain the first and 

second E-Banhatti polynomials of Fn. 

 

Theorem 4. Let Fn be a friendship graph. Then  

   (i)     

24 4

2 1 2 1
1 , 2 .

n

n n
nEB F x nx nx    

  (ii)       

2

2

4 4

2 1 2 1
2 , 2 .

n

n n
nEB F x nx nx    

 

5. H-NAPHTALENIC NANOTUBES                                              

 

     We consider a family of H-Naphtalenic nanotubes which is denoted by NHPX[m, n], see Figure 3. 

 

 
Figure 3. Graph of H-Naphtalenic nanotube  

 

The graphs of a nanotube NHPX [m, n] have 10mn vertices and 15mn – 2m edges are shown in above graph. Let 

G= NHPX [m, n]. 

          In G, there are two types of edges as follows:  

E1 = {uv∈ E(G) | d(u) = 2, d(v) = 3},  |E1| = 8m. 

E2 = {uv∈ E(G) | d(u) = d(v) = 3},                |E2| = 15mn – 10m . 

 

    Therefore, in NHPX[m, n], we obtain that {B(u), B(v): uv∈ E(NHPX[m, n])}has two  Banhatti edge set 

partitions.  

            BE1 = {uv∈ E(G) | B(u) =
3

10 2mn 
, B(v) =

3

10 3mn 
}, |BE1| = 8m. 

            BE2 = {uv∈ E(G) | B(u) = B(v) =
4

10 3mn 
}, |BE2| = 15mn−10m. 
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           We calculate the first and second E-Banhatti indices of H-Naphtalenic nanotubes as follows: 

 

Theorem 5.  Let NHPX[m, n] be an H-Naphtalenic nanotube. Then  

   (i)       
 

  

 

 1

120 4 1 40 3 2
[ , ] .

10 2 10 3 10 3

m mn mn m
EB NHPX m n

mn mn mn

 
 

  
  

   (ii)       
  

 

 
2 2

72 80 3 2
[ , ] .

10 2 10 3 10 3

m mn m
EB NHPX m n

mn mn mn


 

  
 

Proof: From definition and by cardinalities of the Banhatti edge partition of an H-Naphtalenic nanotube, we 

obtain 

   (i)            
 

1 [ , ]
uv E G

EB NHPX m n B u B v


   

                                              

 
3 3 4 4

8 15 10 .
10 2 10 3 10 3 10 3

m mn m
mn mn mn mn

   
       

        
By simplifying the above equation, we get the desired result.                                                            

   (ii)           
 

2 [ , ]
uv E G

EB NHPX m n B u B v


   

                                             

 
3 3 4 4

8 15 10 .
10 2 10 3 10 3 10 3

m mn m
mn mn mn mn

   
       

        
By solving the above equation, we get the desired result.  

 

          By using definitions and by cardinalities of the Banhatti edge partition of an H-Naphtalenic nanotube, we 

obtain the first and second E-Banhatti polynomials of an H-Naphtalenic nanotube. 

  

Theorem 6. Let NHPX[m, n] be an H-Naphtalenic nanotube. Then 

    (i)         

 

    

15 4 1 8

10 2 10 3 10 3
1 [ , ], 8 15 10 .

mn

mn mn mnEB NHPX m n x mx mn m x



      

   (ii)                2

169

10 2 10 3 10 3
2 [ , ], 8 15 10 .mn mn mnEB NHPX m n x mx mn m x      

 

  6. HC5C7 [p, q] NANOTUBES 

 

        We consider HC5C7[p, q] nanotubes, see Figure 4. 

 

 
Figure 4. 2-D lattice of HC5C7 [8, 4] nanotube 

 

The graphs of a nanotube HC5C7[p, q] have 4pq vertices and 6pq – p edges are shown in above graph. Let G= 

HC5C7[p, q]. 

        In G, there are two types of edges as follows:  

 E1 = {uv∈E(G)| d(u)=2, d(v) = 3},          |E1| = 4p. 

 E2 = {uv∈E(G)| d(u)= d(v) = 3},          |E2| = 6pq – 5p. 
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       Therefore, in G, we obtain that {B(u), B(v): uv∈ E(NHPX[m, n])}has two  Banhatti edge set partitions.  

           BE1 = {uv∈ E(G) | B(u) =
3

4 2pq 
, B(v) =

3

4 3pq 
},          |BE1| = 4p. 

 BE2 = {uv∈ E(G) | B(u) = B(v) =
4

4 3pq 
},    |BE2| = 6pq−5p. 

 

      We calculate the first and second E-Banhatti indices of a nanotube 5 7[ , ]HC C p q  as follows: 

 

Theorem 7.  Let 5 7[ , ]HC C p q be a nanotube. Then 

 

    (i)       
 

  

 

 5 71

12 8 5 8 6 5
[ , ] .

4 2 4 3 4 3

p pq pq p
EB p q

p
H C

pq
C

q pq

 
 

  
 

 

   (ii)       
  

 

 
5 72 2

16 6 536
[ , ] .

4 2 4 3 4 3

pq pp
EB p q

pq pq p
C C

q
H


 

  
 

Proof: From definition and by cardinalities of the Banhatti edge partition of 5 7[ , ],HC C p q we obtain 

     (i)           
 

5 71 [ , ]
uv E G

EB p q B uH B vC C


   

                                              

 
3 3 4 4

4 6 5 .
4 2 4 3 4 3 4 3

p pq p
pq pq pq pq

   
               

By solving the above equation, we get the desired result.                                                                           

    (ii)          
 

5 72 [ , ]
uv E G

EB p q B u B vHC C


   

                                              

 
3 3 4 4

4 6 5 .
4 2 4 3 4 3 4 3

p pq p
pq pq pq pq

   
               

By simplifying the above equation, we get the desired result.   

 
             By using definitions and by cardinalities of the Banhatti edge partition of a HC5C7[p, q] nanotube, we 

obtain the first and second E-Banhatti polynomials of a HC5C7[p, q] nanotube.  

 

Theorem 8. Let 5 7[ , ]HC C p q be a nanotube. Then 

   (i)       

 

    

3 8 5 8

4 2 4 3 4 3
1 5 7[ , ], 4 6 5 .

pq

pq pq pqEB p q x px pC qH C p x



      

  (ii)              
2

169

4 2 4
5

3 4 3
2 7[ , ], 4 6 5 .

pq pq pq
EB p q x px pq p xHC C

  
  

 
 

5. CONCLUSION . 
 

           In this study, we have defined the Banhatti degree of a vertex in a graph. We have introduced the first and 

second E-Banhatti indices of a graph. Furthermore, we have determined these newly defined indices for some 

standard graphs and certain nanotubes. This study is a new direction in Graph Indices. 
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